Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.671
Filtrar
1.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592962

RESUMO

How mutations in mitochondrial electron transport chain (ETC) proteins impact the cell cycle of Candida albicans was investigated in this study. Using genetic null mutants targeting ETC complexes I (CI), III (CIII), and IV (CIV), the cell cycle stages (G0/G1, S phase, and G2/M) were analyzed via fluorescence-activated cell sorting (FACS). Four CI null mutants exhibited distinct alterations, including extended S phase, shortened G2/M population, and a reduction in cells size exceeding 10 µM. Conversely, CIII mutants showed an increased population in G1/G0 phase. Among four CI mutants, ndh51Δ/Δ and goa1Δ/Δ displayed aberrant cell cycle patterns correlated with previously reported cAMP/PKA downregulation. Specifically, nuo1Δ/Δ and nuo2Δ/Δ mutants exhibited increased transcription of RIM15, a central hub linking cell cycle with nutrient-dependent TOR1 and cAMP/PKA pathways and Snf1 aging pathway. These findings suggest that suppression of TOR1 and cAMP/PKA pathways or enhanced Snf1 disrupts cell cycle progression, influencing cell longevity and growth among CI mutants. Overall, our study highlights the intricate interplay between mitochondrial ETC, cell cycle, and signaling pathways.


Assuntos
Candida albicans , Mitocôndrias , Candida albicans/fisiologia , Fase S , Mitocôndrias/metabolismo , Ciclo Celular , Divisão Celular
2.
Microb Pathog ; 189: 106606, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437994

RESUMO

Fungal keratitis (FK) is a highly blinding infectious corneal disease caused by pathogenic fungi. Candida albicans (C. albicans) is one of the main pathogens of fungal keratitis. Extracellular vesicles (EVs), lipid bilayer compartments released by almost all living cells, including fungi, have garnered attention for their role in pathogenic microbial infection and host immune responses in recent years. Studies have reported that pretreating the host with fungal EVs can reduce the inflammatory response of the host when attacked by fungi and reduce the lethality of fungal infection. However, there are no studies that have evaluated whether C. albicans EVs can modulate the inflammatory response associated with C. albicans keratitis. Our study revealed that C. albicans EVs could activate the polymorphonuclear cells (PMNs) and promote their secretion of proinflammatory cytokines and nitric oxide (NO), enhance their phagocytic and fungicidal abilities against C. albicans. C. albicans EVs also induced a proinflammatory response in RAW264.7 cells, which was characterized by increased production of inflammatory cytokines and elevated expression of the chemokine CCL2. Similarly, stimulation of C. albicans EVs to RAW264.7 cells also enhanced the phagocytosis and killing ability of cells against C. albicans. Besides, in our in vivo experiments, after receiving subconjunctival injection of C. albicans EVs, C57BL/6 mice were infected with C. albicans. The results demonstrated that pre-exposure to C. albicans EVs could effectively diminish the severity of keratitis, reduce fungal load and improve prognosis. Overall, we conclude that C. albicans EVs can modulate the function of immune cells and play a protective role in C. albicans keratitis.


Assuntos
Vesículas Extracelulares , Ceratite , Animais , Camundongos , Candida albicans/fisiologia , Camundongos Endogâmicos C57BL , Ceratite/microbiologia , Citocinas
3.
Virulence ; 15(1): 2334085, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38528835

RESUMO

Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibodies (ASCA), a serological marker of Crohn's disease. ASCA has also been reported in other autoimmune diseases, including coeliac disease (CeD). A strong antibody response against Hwp1, a protein associated with invasive hyphal form of C. albicans which presents peptide sequence homologies with gliadin, has also been described in CeD. This observation supports the hypothesis that C. albicans hyphal transition in C. albicans may trigger CeD onset through a mechanism of molecular/antigenic mimicry. In this study, we assessed whether the anti-C. albicans oligomannose and anti-Hwp1 protein responses may be linked despite their different pathophysiological significance. The measurement of ASCA levels in a cohort of patients involved in our previous Hwp1 study showed a significant correlation between the two biomarkers. This new observation further reinforces the link between C. albicans and CeD.


Assuntos
Doença Celíaca , Doença de Crohn , Humanos , Candida albicans/fisiologia , Doença Celíaca/microbiologia , Anticorpos Antifúngicos , Formação de Anticorpos
4.
BMC Oral Health ; 24(1): 303, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439020

RESUMO

BACKGROUND: The present systematic review and meta-analysis investigated the available evidence about the adherence of Candida Albicans to the digitally-fabricated acrylic resins (both milled and 3D-printed) compared to the conventional heat-polymerized acrylic resins. METHODS: This study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA). A comprehensive search of online databases/search tools (Web of Science, Scopus, PubMed, Ovid, and Google Scholar) was conducted for all relevant studies published up until May 29, 2023. Only in-vitro studies comparing the adherence of Candida albicans to the digital and conventional acrylic resins were included. The quantitative analyses were performed using RevMan v5.3 software. RESULTS: Fourteen studies were included, 11 of which were meta-analyzed based on Colony Forming Unit (CFU) and Optical Density (OD) outcome measures. The pooled data revealed significantly lower candida colonization on the milled digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (MD = - 0.36; 95%CI = - 0.69, - 0.03; P = 0.03 and MD = - 0.04; 95%CI = - 0.06, - 0.01; P = 0.0008; as measured by CFU and OD respectively). However, no differences were found in the adhesion of Candida albicans between the 3D-printed digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (CFU: P = 0.11, and OD: P = 0.20). CONCLUSION: The available evidence suggests that candida is less likely to adhere to the milled digitally-fabricated acrylic resins compared to the conventional ones.


Assuntos
Resinas Acrílicas , Candida albicans , Candida albicans/fisiologia , Bases de Dados Factuais
5.
Front Immunol ; 15: 1295168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384468

RESUMO

Candida albicans remains the predominant cause of fungal infections, where adhered microbial cells form biofilms - densely packed communities. The central feature of C. albicans biofilms is the production of an extracellular matrix (ECM) consisting of polymers and extracellular nucleic acids (eDNA, eRNA), which significantly impedes the infiltration of host cells. Neutrophils, as crucial players in the innate host defense, employ several mechanisms to eradicate the fungal infection, including NETosis, endocytosis, or the release of granules containing, among others, antimicrobial peptides (AMPs). The main representative of these is the positively charged peptide LL-37 formed from an inactive precursor (hCAP18). In addition to its antimicrobial functions, this peptide possesses a propensity to interact with negatively charged molecules, including nucleic acids. Our in vitro studies have demonstrated that LL-37 contacting with C. albicans nucleic acids, isolated from biofilm, are complexed by the peptide and its shorter derivatives, as confirmed by electrophoretic mobility shift assays. We indicated that the generation of the complexes induces discernible alterations in the neutrophil response to fungal nucleic acids compared to the effects of unconjugated molecules. Our analyses involving fluorescence microscopy, flow cytometry, and Western blotting revealed that stimulation of neutrophils with DNA:LL-37 or RNA:LL-37 complexes hamper the activation of pro-apoptotic caspases 3 and 7 and fosters increased activation of anti-apoptotic pathways mediated by the Mcl-1 protein. Furthermore, the formation of complexes elicits a dual effect on neutrophil immune response. Firstly, they facilitate increased nucleic acid uptake, as evidenced by microscopic observations, and enhance the pro-inflammatory response, promoting IL-8 production. Secondly, the complexes detection suppresses the production of reactive oxygen species and attenuates NETosis activation. In conclusion, these findings may imply that the neutrophil immune response shifts toward mobilizing the immune system as a whole, rather than inactivating the pathogen locally. Our findings shed new light on the intricate interplay between the constituents of the C. albicans biofilm and the host's immune response and indicate possible reasons for the elimination of NETosis from the arsenal of the neutrophil response during contact with the fungal biofilm.


Assuntos
Candida albicans , Ácidos Nucleicos , Candida albicans/fisiologia , Neutrófilos , Catelicidinas/farmacologia , Ácidos Nucleicos/metabolismo , Biofilmes
6.
Future Microbiol ; 19: 307-316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358357

RESUMO

Background: The interaction between the host and Candida albicans is dynamic and intricate. We performed proteomic analysis to explore monocyte-C. albicans hyphae interaction. Materials & methods: Primary human monocytes were stimulated by heat-killed C. albicans hyphae and their proteins were profiled by tandem liquid chromatography with mass spectrometry (LC-MS/MS). Results: Based on the protein database of different species for analysis, we found that stimulation of monocytes by hyphae was accompanied by upregulation of histones and activation of extracellular traps (ETs) formation pathway. Meanwhile, monocyte ETs (MoETs) were evoked by synthesis or alteration of C. albicans cell wall proteins expression during the morphological switch to hyphal. Conclusion: MoETs formation is linked to cell wall proteins of C. albicans hyphae.


Assuntos
Candida albicans , Armadilhas Extracelulares , Humanos , Candida albicans/fisiologia , Monócitos , Armadilhas Extracelulares/metabolismo , Hifas , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas Fúngicas/metabolismo
7.
Theranostics ; 14(4): 1781-1793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389835

RESUMO

Candida albicans and Porphyromonas gingivalis are prevalent in the subgingival area where the frequency of fungal colonization increases with periodontal disease. Candida's transition to a pathogenic state and its interaction with P. gingivalis exacerbate periodontal disease severity. However, current treatments for these infections differ, and combined therapy remains unexplored. This work is based on an antimicrobial peptide that is therapeutic and induces a color change in a nanoparticle reporter. Methods: We built and characterized two enzyme-activatable prodrugs to treat and detect C. albicans and P. gingivalis via the controlled release of the antimicrobial peptide. The zwitterionic prodrug quenches the antimicrobial peptide's activity until activation by a protease inherent to the pathogens (SAP9 for C. albicans and RgpB for P. gingivalis). The toxicity of the intact prodrugs was evaluated against fungal, bacterial, and mammalian cells. Therapeutic efficacy was assessed through microscopy, disk diffusion, and viability assays, comparing the prodrug to the antimicrobial peptide alone. Finally, we developed a colorimetric detection system based on the aggregation of plasmonic nanoparticles. Results: The intact prodrugs showed negligible toxicity to cells absent a protease trigger. The therapeutic impact of the prodrugs was comparable to that of the antimicrobial peptide alone, with a minimum inhibitory concentration of 3.1 - 16 µg/mL. The enzymatic detection system returned a detection limit of 10 nM with gold nanoparticles and 3 nM with silver nanoparticles. Conclusion: This approach offers a convenient and selective protease sensing and protease-induced treatment mechanism based on bioinspired antimicrobial peptides.


Assuntos
Nanopartículas Metálicas , Doenças Periodontais , Pró-Fármacos , Animais , Porphyromonas gingivalis/fisiologia , Candida albicans/fisiologia , Peptídeo Hidrolases , Peptídeos Antimicrobianos , Pró-Fármacos/farmacologia , Preparações de Ação Retardada , Ouro , Prata , Endopeptidases , Mamíferos
8.
Cells ; 13(2)2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38247818

RESUMO

Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.


Assuntos
Candida albicans , Proteínas de Choque Térmico , Macrófagos , Animais , Camundongos , Candida albicans/metabolismo , Candida albicans/fisiologia , Proteínas de Choque Térmico/metabolismo , Hipóxia , Proteômica , Secretoma , Fatores de Necrose Tumoral , Interações Hospedeiro-Parasita , Macrófagos/imunologia , Macrófagos/metabolismo
9.
Inflammation ; 47(1): 191-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37740789

RESUMO

Candida albicans is a common opportunistic pathogenic fungus. The innate immune system provides the first-line host defense against fungal infection. Innate immune receptors and downstream molecules have been shown to play various roles during fungal infection. The innate immune receptor MDA5, encoded by the gene Ifih1, enhances host resistance against viral and Aspergillus fumigatus infection by inducing the production of interferons (IFNs). However, the role of MDA5 in C. albicans infection is still unclear. Here, we found that the gene expression levels of IFIH1 were significantly increased in innate immune cells after C. albicans stimulation through human bioinformatics analysis or mouse experiments. Through in vivo study, MDA5 was shown to enhance host susceptibility to C. albicans infection independent of IFN production. Instead, MDA5 exerted its influence on macrophages and kidneys by modulating the expression of Noxa, Bcl2, and Bax, thereby promoting apoptosis. Additionally, MDA5 compromised killing capabilities of macrophage by inhibition iNOS expression. The introduction of the apoptosis inducer PAC1 further impaired macrophage functions, mimicking the enhancing effect of MDA5 on C. albicans infection. Furthermore, the administration of macrophage scavengers increased the susceptibility of Ifih1-/- mice to C. albicans. The founding suggests that MDA5 promote host susceptibility to invasive C. albicans by enhancing cell apoptosis and compromising macrophage functions, making MDA5 a target to treat candidiasis.


Assuntos
Candida albicans , Candidíase , Animais , Humanos , Camundongos , Apoptose , Candida albicans/fisiologia , Helicase IFIH1 Induzida por Interferon , Macrófagos , Fagocitose
10.
PLoS Pathog ; 19(12): e1011833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091321

RESUMO

The ability of the fungus Candida albicans to filament and form biofilms contributes to its burden as a leading cause of hospital-acquired infections. Biofilm development involves an interconnected transcriptional regulatory network (TRN) consisting of nine transcription factors (TFs) that bind both to their own regulatory regions and to those of the other network TFs. Here, we show that seven of the nine TFs in the C. albicans biofilm network contain prion-like domains (PrLDs) that have been linked to the ability to form phase-separated condensates. Construction of PrLD mutants in four biofilm TFs reveals that these domains are essential for filamentation and biofilm formation in C. albicans. Moreover, biofilm PrLDs promote the formation of phase-separated condensates in the nuclei of live cells, and PrLD mutations that abolish phase separation (such as the removal of aromatic residues) also prevent biofilm formation. Biofilm TF condensates can selectively recruit other TFs through PrLD-PrLD interactions and can co-recruit RNA polymerase II, implicating condensate formation in the assembly of active transcriptional complexes. Finally, we show that PrLD mutations that block the phase separation of biofilm TFs also prevent filamentation in an in vivo model of gastrointestinal colonization. Together, these studies associate transcriptional condensates with the regulation of filamentation and biofilm formation in C. albicans, and highlight how targeting of PrLD-PrLD interactions could prevent pathogenesis by this species.


Assuntos
Candida albicans , Fatores de Transcrição , Candida albicans/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hifas , Biofilmes , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
11.
Arch Razi Inst ; 78(3): 1005-1015, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-38028848

RESUMO

This study aimed to investigate the antibacterial and antifungal activities of selenium nanoparticles (SeNPs) and berberine (BBR) despite antibiotic resistance against Klebsiella pneumoniae and Candida albicans. Cells of K. pneumoniae and C. albicans were treated with solutions of different concentrations of each bare SeNPs, BBR, and BBR-loaded SeNPs (BLS) using the disk diffusion method. The results indicated that the activities of SeNPs, BBR, and BLS were statistically significant (P<0.05) when the concentration of all agents increased. Moreover, it was found that BLS had a statistically significant effect against K. pneumoniae and C. albicans, compared to SeNPs and BBR alone (P<0.05). The largest zones of inhibition of SeNPs were 14 and 16 mm toward K. pneumoniae and C. albicans, respectively, at the concentration of 20 Mml, compared to the concentrations of 10 and 15 Mml. Furthermore, BBR showed a maximum zone of inhibition at the concentration of 1,200 mg (15 mm for K. pneumoniae and 18 mm for C. albicans) and it was statistically significant in comparison with other concentrations of 400 and 800 mg. In addition, the BLS underwent a statistically significant increase (P<0.05) when the concentration increased and it registered a large zone of inhibition of 22 and 25 mm against K. pneumoniae and C. albicans, respectively, at 20 Mml of SeNPs: 1,200 mg BBR, compared to 10 Mml of SeNPs: 400 mg BBR and 15 Mml of SeNPs: 800 mg BBR. Based on the results of the current study, there was a statistically synergistic effect of BBR-loaded SeNPs, compared to that of BBR and Se nanoparticles, only in the case of both K. pneumoniae and C. albicans. This study is promising as a blueprint for the enhancement of weak antimicrobial agents and their return to their previous role as antibiotics.


Assuntos
Berberina , Nanopartículas , Selênio , Animais , Candida albicans/fisiologia , Selênio/farmacologia , Berberina/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
12.
Gut Microbes ; 15(2): 2287618, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38017705

RESUMO

Candida albicans is a commensal yeast present in the gut of most healthy individuals but with highly variable concentrations. However, little is known about the host factors that influence colonization densities. We investigated how microbiota, host lifestyle factors, and genetics could shape C. albicans intestinal carriage in 695 healthy individuals from the Milieu Intérieur cohort. C. albicans intestinal carriage was detected in 82.9% of the subjects using quantitative PCR. Using linear mixed models and multiway-ANOVA, we explored C. albicans intestinal levels with regard to gut microbiota composition and lifestyle factors including diet. By analyzing shotgun metagenomics data and C. albicans qPCR data, we showed that Intestinimonas butyriciproducens was the only gut microbiota species whose relative abundance was negatively correlated with C. albicans concentration. Diet is also linked to C. albicans growth, with eating between meals and a low-sodium diet being associated with higher C. albicans levels. Furthermore, by Genome-Wide Association Study, we identified 26 single nucleotide polymorphisms suggestively associated with C. albicans colonization. In addition, we found that the intestinal levels of C. albicans might influence the host immune response, specifically in response to fungal challenge. We analyzed the transcriptional levels of 546 immune genes and the concentration of 13 cytokines after whole blood stimulation with C. albicans cells and showed positive associations between the extent of C. albicans intestinal levels and NLRP3 expression, as well as secreted IL-2 and CXCL5 concentrations. Taken together, these findings open the way for potential new interventional strategies to curb C. albicans intestinal overgrowth.


Assuntos
Candida albicans , Microbioma Gastrointestinal , Humanos , Candida albicans/fisiologia , Estudo de Associação Genômica Ampla , Microbioma Gastrointestinal/fisiologia , Dieta , Imunidade
13.
J Oral Biosci ; 65(4): 293-304, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806338

RESUMO

OBJECTIVES: This study aimed to determine the impact of low levels of alcohol consumption on the interaction of the oral cavity with Candida albicans, a species that is commonly found at higher levels in the oral cavities of regular alcohol consumers, patients with pre-malignant diseases, and patients with existing oral cancer (OC). METHODS: The gingival squamous cell carcinoma cell line, Ca9-22, was subjected to low-level ethanol exposure before co-culture with heat-inactivated C. albicans (HICA). We performed cell viability assays, measured reactive oxygen species, and used Western blot analysis for cell death markers to examine the effect of ethanol and HICA on cells. Scratch assays and anchorage-independent growth assays were used to determine cell behavioral changes. RESULTS: The results showed that ethanol in combination with HICA exacerbated cell death and cell cycle disruption, delayed NF-κB signaling, increased TIMP-2 secretion, and subsequently decreased MMP-2 secretion when compared to exposure to HICA alone. Conversely, both ethanol and HICA independently increased proliferation of Ca9-22 cells in scratch assays, and in combination, increased their capacity for anchorage-independent growth. CONCLUSION: Low levels of ethanol may provide protective effects against Candida-induced inflammatory oral carcinogenesis or OC progression.


Assuntos
Candida albicans , Neoplasias Bucais , Humanos , Candida albicans/fisiologia , Etanol/metabolismo , Etanol/farmacologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Neoplasias Bucais/induzido quimicamente , Carcinogênese
14.
Trends Microbiol ; 31(12): 1287-1299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640601

RESUMO

While the fungus Candida albicans is a common colonizer of healthy humans, it is also responsible for mucosal infections and severe invasive disease. Understanding the mechanisms that allow C. albicans to exist as both a benign commensal and as an invasive pathogen have been the focus of numerous studies, and recent findings indicate an important role for cross-kingdom interactions on C. albicans biology. This review highlights how C. albicans-bacteria interactions influence healthy polymicrobial community structure, host immune responses, microbial pathogenesis, and how dysbiosis may lead to C. albicans infection. Finally, we discuss how cross-kingdom interactions represent an opportunity to identify new antivirulence compounds that target fungal infections.


Assuntos
Candida albicans , Candida , Humanos , Candida albicans/fisiologia , Bactérias
15.
APMIS ; 131(11): 613-625, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37337909

RESUMO

Candida spp. are opportunistic yeasts capable of forming biofilms, which contribute to resistance, increasing the urgency for new effective antifungal therapies. Repurposing existing drugs could significantly accelerate the development of novel therapies against candidiasis. We screened the Pandemic Response Box containing 400 diverse drug-like molecules active against bacteria, viruses or fungi, for inhibitors of Candida albicans and Candida auris biofilm formation. Initial hits were identified based on the demonstration of >70% inhibitory activity. Dose-response assays were used to confirm the antifungal activity of initial hits and establish their potency. The spectrum of antifungal activity of the leading compounds was determined against a panel of medically important fungi, and the in vivo activity of the leading repositionable agent was evaluated in murine models of C. albicans and C. auris systemic candidiasis. The primary screening identified 20 hit compounds, and their antifungal activity and potency against C. albicans and C. auris were validated using dose-response measurements. From these experiments, the rapalog everolimus, emerged as the leading repositionable candidate. Everolimus displayed potent antifungal activity against different Candida spp., but more moderate levels of activity against filamentous fungi. Treatment with everolimus increased survival of mice infected with C. albicans, but not those with C. auris. The screening of the Pandemic Response Box resulted in the identification of several drugs with novel antifungal activity, with everolimus emerging as the main repositionable candidate. Further in vitro and in vivo studies are needed to confirm its potential therapeutic use.


Assuntos
Antifúngicos , Candida albicans , Camundongos , Animais , Candida albicans/fisiologia , Antifúngicos/farmacologia , Candida auris , Everolimo/farmacologia , Pandemias , Candida , Biofilmes , Testes de Sensibilidade Microbiana
16.
APMIS ; 131(11): 584-600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37150907

RESUMO

Yeasts such as Candida albicans, albeit being ubiquitous members of the skin, oral and vaginal microbiome, can cause superficial to life-threatening infections. Human cathelicidin LL-37-based peptides have antibacterial activity and yet, their antifungal activity remains to be thoroughly characterized. The aim of this study was to comprehensively investigate the activity of LL-37-based peptides against C. albicans. LL-37 and its derivatives were tested for their ability to kill C. albicans planktonic cells in the presence of various biological matrices (serum, plasma, saliva and urine), that have been reported to inactivate peptides. The antibiofilm activity, resistance development and biocompatibility were investigated for the lead peptide. GK-17, a 17 amino acid peptide, showed remarkable stability to fungal aspartyl proteases and rapidly killed planktonic C. albicans despite the presence of biological matrices. GK-17 also inhibited adhesion to biotic and abiotic substrates, inhibited biofilm formation and eradicated preformed biofilms in the presence of biological matrices. Compared to nystatin, GK-17 had a lower propensity to allow for resistance development by C. albicans. The peptide showed concentration-dependent biocompatibility to red blood cells, with only 30% hemolysis even at 4× the fungicidal concentration. Taken together, GK-17 is a novel antifungal peptide with promising effects against C. albicans.


Assuntos
Antifúngicos , Catelicidinas , Feminino , Humanos , Antifúngicos/farmacologia , Catelicidinas/farmacologia , Aminoácidos , Candida albicans/fisiologia , Nistatina/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
17.
Methods Mol Biol ; 2667: 1-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37145272

RESUMO

Fungi can adapt to a wide range of environmental stresses in the wild and host milieu by employing their plastic genome and great diversity in morphology. Among different adaptive strategies, mechanical stimuli, such as changes in osmotic pressure, surface remodeling, hyphal formation, and cell divisions, could guide the physical cues into physiological responses through a complex signaling network. While fungal pathogens require a pressure-driven force to expand and penetrate host tissues, quantitatively studying the biophysical properties at the host-fungal interface is critical to understand the development of fungal diseases. Microscopy-based techniques have enabled researchers to monitor the dynamic mechanics on fungal cell surface in responses to the host stress and antifungal drugs. Here, we describe a label-free, high-resolution method based on atomic force microscopy, with a step-by-step protocol to measure the physical properties in human fungal pathogen Candida albicans.


Assuntos
Candida albicans , Hifas , Humanos , Candida albicans/fisiologia , Microscopia de Força Atômica/métodos , Membrana Celular , Análise Espectral
18.
Front Immunol ; 14: 1123200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114044

RESUMO

Candida auris, an emerging multi-drug resistant fungal pathogen, causes invasive infections in humans. The factors regulating the colonization of C. auris in host niches are not well understood. In this study, we examined the effect of antibiotic-induced gut dysbiosis on C. auris intestinal colonization, dissemination, microbiome composition and the mucosal immune response. Our results indicate that mice treated with cefoperazone alone had a significant increase in C. auris intestinal colonization compared to untreated control groups. A significant increase in the dissemination of C. auris from the intestine to internal organs was observed in antibiotic-treated immunosuppressed mice. Intestinal colonization of C. auris alters the microbiome composition of antibiotic-treated mice. Relative abundance of firmicutes members mainly Clostridiales and Paenibacillus were considerably increased in the cefoperazone-treated mice infected with C. auris compared to cefoperazone-treated uninfected mice. Next, we examined the mucosal immune response of C. auris infected mice and compared the results with Candida albicans infection. The number of CD11b+ CX3CR1+ macrophages was significantly decreased in the intestine of C. auris infected mice when compared to C. albicans infection. On the other hand, both C. auris and C. albicans infected mice had a comparable increase of the number of Th17 and Th22 cells in the intestine. A significant increase in Candida-specific IgA was observed in the serum of C. auris but not in the C. albicans infected mice. Taken together, treatment with broad-spectrum antibiotic increased the colonization and dissemination of C. auris from the intestine. Furthermore, findings from this study for the first time revealed the microbiome composition, innate and adaptive cellular immune response to intestinal infection with C. auris.


Assuntos
Antibacterianos , Cefoperazona , Humanos , Animais , Camundongos , Cefoperazona/farmacologia , Cefoperazona/uso terapêutico , Antibacterianos/farmacologia , Candida auris , Imunidade nas Mucosas , Candida albicans/fisiologia
19.
Mycopathologia ; 188(3): 231-241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099227

RESUMO

Antisense oligomers (ASOs) have been little exploited to control determinants of Candida albicans virulence. Biofilm formation is an important virulence factor of C. albicans, that is regulated by a complex network of transcription factors (such as EFG1, BRG1 and ROB1). Thus, the main goal of this work was to project ASOs, based on the 2'-OMethyl chemical modification, to target BRG1 and ROB1 mRNA and to validate its application either alone or in combination with the EFG1 mRNA target, to reduce C. albicans biofilm formation. The ability of ASOs to control gene expression was evaluate by qRT-PCR. The effect on biofilm formation was determined by the total biomass quantification, and simultaneously the carbohydrates and proteins reduction on extracellular matrix. It was verified that all the oligomers were able to reduce the levels of gene expression and the ability of C. albicans to form biofilms. Furthermore, the combined application of the cocktail of ASOs enhances the inhibition of C. albicans biofilm formation, minimizing biofilm thickness by reducing the quantity of matrix content (protein and carbohydrate). So, our work confirms that ASOs are useful tools for research and therapeutic development on the control of Candida species biofilm formation.


Assuntos
Candida albicans , Fatores de Transcrição , Candida albicans/fisiologia , Fatores de Transcrição/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , RNA Mensageiro , Biofilmes
20.
Future Microbiol ; 18: 295-309, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37097060

RESUMO

Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.


SAPs are enzymes that are important for fungi to cause infections and survive in the host body. This article explains how SAP helps fungi to change their morphology and form a protective layer called a biofilm. SAP also helps fungi invade host cells and break down proteins. Because SAP is present in every stage of fungal infections, it could be a target for new medicines that fight fungal infections and biofilms. By targeting SAP, scientists could stop fungi from adhering to the host, growing into long hyphae, forming biofilms, invading host cells and evading the host immune system. If scientists can develop treatments that target SAP, they may be able to treat a variety of fungal infections more effectively.


Assuntos
Ácido Aspártico Proteases , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Candida albicans/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Virulência , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...